Hypergravity hinders axonal development of motor neurons in [i]Caenorhabditis elegans[i]
نویسندگان
چکیده
As space flight become more accessible in the future, humans will be exposed to gravity conditions other than our 1G environment on Earth. Changes in physiology and anatomy in altered gravity conditions have long been observed, especially the loss of muscle mass during long-term space habitation, the reason for which is not fully understood. Although much effort has gone into studying the effects of gravity in muscle physiology, its effect on the development of neurons has not been thoroughly assessed. Using the nematode model organism Caenorhabditis elegans, we examined changes in response to hypergravity in the development of the 19 GABAergic DD/VD motor neurons that innervate body muscle. We found that a high gravity force above 10G significantly increases the number of animals with defects in the development of axonal projections from the DD/VD neurons. We showed that a critical period of hypergravity exposure during the embryonic/early larval stage was sufficient to induce defects. While characterizing the nature of the axonal defects, we found that in normal 1G gravity conditions, DD/VD axonal defects occasionally occurred, with the majority of defects occurring on the dorsal side of the animal and in the mid-body region, and a significantly higher rate of error in the 13 VD axons than the 6 DD axons. Hypergravity exposure increased the rate of DD/VD axonal defects, but did not change the distribution or the characteristics of the defects. Our study demonstrates that in addition to gravity’s effects on muscle development, gravity can also impact motor neuron development.
منابع مشابه
Hypergravity hinders axonal development of motor neurons in Caenorhabditis elegans
As space flight becomes more accessible in the future, humans will be exposed to gravity conditions other than our 1G environment on Earth. Our bodies and physiology, however, are adapted for life at 1G gravity. Altering gravity can have profound effects on the body, particularly the development of muscles, but the reasons and biology behind gravity's effect are not fully known. We asked whethe...
متن کاملunc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors.
The expression of specialized signal transduction components in mammalian olfactory neurons is thought to be regulated by the O/E (Olf-1/EBF) family of transcription factors. The O/E proteins are expressed in cells of the olfactory neuronal lineage throughout development and are also expressed transiently in neurons in the developing nervous system during embryogenesis. We have identified a C. ...
متن کاملExpression of the unc-4 homeoprotein in Caenorhabditis elegans motor neurons specifies presynaptic input.
In the nematode, Caenorhabditis elegans, VA and VB motor neurons arise from a common precursor cell but adopt different morphologies and synapse with separate sets of interneurons in the ventral nerve cord. A mutation that inactivates the unc-4 homeodomain gene causes VA motor neurons to assume the VB pattern of synaptic input while retaining normal axonal polarity and output; the disconnection...
متن کاملTranslocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans.
We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1-1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed ...
متن کاملThe C-terminal of CASY-1/Calsyntenin regulates GABAergic synaptic transmission at the Caenorhabditis elegans neuromuscular junction
The C. elegans ortholog of mammalian calsyntenins, CASY-1, is an evolutionarily conserved type-I transmembrane protein that is highly enriched in the nervous system. Mammalian calsyntenins are strongly expressed at inhibitory synapses, but their role in synapse development and function is still elusive. Here, we report a crucial role for CASY-1 in regulating GABAergic synaptic transmission at t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016